Python Dashboard for Amazon Seller Performance

Building a Python Dashboard for Amazon Seller Performance with SellerMagnetAPI

By Emma Johnson | July 19, 2025

Building a Python Dashboard for Amazon Seller Performance with SellerMagnetAPI

In today's competitive e-commerce landscape, Amazon sellers require robust tools to monitor and optimize their performance. A custom dashboard provides real-time insights into critical metrics, enabling data-driven decisions for competitive analysis, inventory management, and market research. This post demonstrates how to build a Python dashboard leveraging the power of SellerMagnetAPI, an enterprise-grade Amazon data API.

Why Build a Custom Dashboard?

While Amazon provides some analytics, a custom dashboard offers several advantages:

  • Tailored Metrics: Focus on the KPIs most relevant to your business strategy.
  • Data Integration: Combine Amazon data with other business data sources for a holistic view.
  • Real-time Monitoring: Track performance changes instantly and react proactively.
  • Competitive Advantage: Gain deeper insights into market trends and competitor activities.

Prerequisites

Before you begin, ensure you have the following:

  • A SellerMagnetAPI account and API key.
  • Python 3.6 or higher installed.
  • Required Python libraries: pandas, plotly, requests, and dash. Install them using pip:
pip install pandas plotly requests dash

Step-by-Step Guide

1. Setting up the Python Environment

Create a new Python script (e.g., amazon_dashboard.py) and import the necessary libraries:

import pandas as pd
import plotly.express as px
import requests
import dash
import dash_core_components as dcc
import dash_html_components as html

2. Retrieving Amazon Product Statistics

Use the Amazon Product Statistics endpoint to fetch detailed data for a specific ASIN. This example retrieves sales rank and review counts:

API_KEY = 'YOUR_API_KEY'
ASIN = 'B08N5WRWNW'
MARKETPLACE_ID = 'ATVPDKIKX0DER'

def get_product_statistics(asin, marketplace_id, api_key):
 url = f'https://sellermagnet-api.com/amazon-product-statistics?asin={asin}&marketplaceId={marketplace_id}&api_key={api_key}'
 response = requests.get(url)
 response.raise_for_status()  # Raise HTTPError for bad responses (4xx or 5xx)
 return response.json()

product_data = get_product_statistics(ASIN, MARKETPLACE_ID, API_KEY)

if product_data['success']:
 data = product_data['data']
 print(data)
else:
 print(f"Error: {product_data.get('errors', 'Unknown error')}")

Example Request:

curl 'https://sellermagnet-api.com/amazon-product-statistics?asin=B08N5WRWNW&marketplaceId=ATVPDKIKX0DER&api_key=YOUR_API_KEY'

Example Response:

{
 "success": true,
 "data": {
 "asin": "B08N5WRWNW",
 "amazonPrice": 4999,
 "bestSellerRank": 123,
 "buyBoxPrice": 4999,
 "buyBoxFulfillment": "FBA",
 "buyBoxSellerIdHistory": [
 ["2024-01-01T00:00:00Z", "A1234567890"]
 ],
 "salesRankHistory": [
 ["2024-01-01T00:00:00Z", 123],
 ["2024-01-02T00:00:00Z", 150]
 ],
 "trackingSince": "2023-12-01",
 "graphs": {
 "priceTrend": [
 {"timestamp": "2024-01-01T00:00:00Z", "price": 4999},
 {"timestamp": "2024-01-02T00:00:00Z", "price": 5099}
 ],
 "rankTrend": [
 {"timestamp": "2024-01-01T00:00:00Z", "rank": 123},
 {"timestamp": "2024-01-02T00:00:00Z", "rank": 150}
 ]
 },
 "metadata": {
 "category": "Electronics",
 "lastUpdated": "2024-01-02T12:00:00Z"
 }
 }
}

3. Building the Dashboard Layout

Initialize the Dash app and define the layout:

app = dash.Dash(__name__)

app.layout = html.Div([
 html.H1(children='Amazon Seller Performance Dashboard'),
 dcc.Graph(id='sales-rank-graph'),
 dcc.Graph(id='price-trend-graph')
])

4. Populating the Dashboard with Data

Create callback functions to update the graphs with data from the Amazon Product Statistics endpoint. This example visualizes sales rank and price trends:

@app.callback(
 dash.Output('sales-rank-graph', 'figure'),
 [dash.Input('sales-rank-graph', 'id')]
)
def update_sales_rank_graph(id):
 if product_data['success']:
 df = pd.DataFrame(data['salesRankHistory'], columns=['timestamp', 'rank'])
 df['timestamp'] = pd.to_datetime(df['timestamp'])
 fig = px.line(df, x='timestamp', y='rank', title='Sales Rank Trend')
 return fig
 else:
 return {
 'data': [],
 'layout': {
 'title': 'Error retrieving sales rank data'
 }
 }

@app.callback(
 dash.Output('price-trend-graph', 'figure'),
 [dash.Input('price-trend-graph', 'id')]
)
def update_price_trend_graph(id):
 if product_data['success'] and data['graphs'] and data['graphs']['priceTrend']:
 df = pd.DataFrame(data['graphs']['priceTrend'])
 df['timestamp'] = pd.to_datetime(df['timestamp'])
 fig = px.line(df, x='timestamp', y='price', title='Price Trend')
 return fig
 else:
 return {
 'data': [],
 'layout': {
 'title': 'Error retrieving price trend data'
 }
 }

5. Running the Dashboard

Add the following lines to run the Dash app:

if __name__ == '__main__':
 app.run_server(debug=True)

Save the script and run it from your terminal:

python amazon_dashboard.py

The dashboard will be accessible in your web browser at http://127.0.0.1:8050/.

Enhancements and Further Use Cases

Competitor Analysis

Utilize the Amazon Product Offers endpoint to compare pricing and seller information across multiple ASINs. Track competitor pricing strategies and inventory levels to optimize your own offerings.

def get_product_offers(asin, marketplace_id, api_key):
 url = f'https://sellermagnet-api.com/amazon-product-offers?asin={asin}&marketplaceId={marketplace_id}&api_key={api_key}'
 response = requests.get(url)
 response.raise_for_status()
 return response.json()

Inventory Management

Combine sales rank data with estimated sales figures from the Amazon Product Estimate Sales endpoint to predict future demand and optimize inventory levels.

def get_estimated_sales(asin, marketplace_id, api_key):
 url = f'https://sellermagnet-api.com/amazon-product-search-estimated-sells?asin={asin}&marketplaceId={marketplace_id}&api_key={api_key}'
 response = requests.get(url)
 response.raise_for_status()
 return response.json()

Market Research

Explore trending products using the Amazon Bestsellers endpoint. Identify high-potential product categories and emerging market opportunities.

def get_bestsellers(category_id, marketplace_id, api_key):
 url = f'https://sellermagnet-api.com/amazon-bestsellers?category_id={category_id}&marketplaceId={marketplace_id}&api_key={api_key}'
 response = requests.get(url)
 response.raise_for_status()
 return response.json()

Seller Reputation Monitoring

Track seller feedback using the Amazon Seller Review endpoint. Monitor your reputation and address negative feedback promptly.

def get_seller_reviews(seller_id, marketplace_id, api_key):
 url = f'https://sellermagnet-api.com/amazon-seller-review?sellerId={seller_id}&marketplaceId={marketplace_id}&api_key={api_key}'
 response = requests.get(url)
 response.raise_for_status()
 return response.json()

Advanced Features

  • Automated Data Updates: Schedule regular data updates using DataPipeline to keep your dashboard current.
  • Geolocation Data: Enhance product offer analysis with Geolocation parameters to refine results based on specific locations.
  • Product Identification: Use the Amazon ASIN/ISBN/EAN Converter to ensure accurate product matching and data retrieval.

Conclusion

Building a custom Python dashboard with SellerMagnetAPI provides Amazon sellers with a powerful tool for monitoring performance, analyzing competition, and making data-driven decisions. By leveraging the comprehensive data provided by SellerMagnetAPI, businesses can gain a significant competitive advantage in the dynamic e-commerce market. Start building your dashboard today and unlock the full potential of your Amazon business.

Explore Documentation and Code Examples for more information.

Back to Blog